epistasis.pyplot package¶
epistasis.pyplot.coefs module¶
-
epistasis.pyplot.coefs.
plot_coefs
(model=None, sites=None, values=None, errors=None, **kwargs)¶ Create a barplot with the values from model, drawing the x-axis as a grid of boxes indicating the coordinate of the epistatic parameter. Should automatically generate an almost publication-quality figure.
Parameters: - model (BaseModel object) – epistasis model.
- sites (array) – array of epistatic indices/sites.
- values (array) – an array of epistatic coefficients
- errors (2d array or list) – upper and lower bounds for each beta.
Keyword Arguments: - logbase (numpy.ufunc (default=np.log10)) – function to transform into log space
- log_transform (bool (default=False)) – transform the values if true.
- order_colors – list/tuple of colors for each order (rgb,html string-like)
- significance – how to treat signifiance. should be 1. “bon” -> Bonferroni corrected p-values (default) 2. “p” -> raw p-values 3. None -> ignore significance
- significance_cutoff – value above which to consider a term significant
- sigmas – number of sigmas to show for each error bar
- y_scalar – how much to scale the y-axis above and beyond y-max
- y_axis_name – what to put on the y-axis of the barplot
- figsize – tuple of figure width,height
- height_ratio – how much to scale barplot relative to xbox
- star_cutoffs –
- signifiance cutoffs for star stack. should go from highest
- p to lowest p (least to most significant)
- star_spacer – constant that scales how closely stacked stars are from one another
- ybounds (tuple (default=None)) –
- bar_borders (bool (default=True)) –
- xgrid (bool (default=True)) –
- ecolor (color (default='black')) –
- elinewidth (float (default=1)) –
- capthick (float (default=1)) –
- capsize (float (default=1)) –
- gridlines (float (default=1)) – x grid linewidth
Returns: - fig (matplotlib.pyplot.Figure) – Figure object
- ax (matplotlib.pyplot.Axes) – Axes object
epistasis.pyplot.nonlinear module¶
-
epistasis.pyplot.nonlinear.
plot_power_transform
(model=None, yadd=None, yobs=None, yerr=None, function=None, cmap=None, color=None, s=50, alpha=1, ax=None, function_line=True, line_color='r', **kwargs)¶ Plot a Y_obs vs. Y_add showing the nonlinear scale in a genotype-phenotype map.
Parameters: - model ((default=None)) – Epistasis model.
- yadd (array (default=None)) – x-axis data. The additive model phenotypes.
- yobs (array (default=None)) – y-axis data. The observed phenotypes.
- yerr (array (default=None)) – y-axis error. Error in observed phenotypes.
- function (callable) – Nonlinear function.
- cmap (str) – Colormap name to map onto scatter points.
- color (str, array,) – color of phenotypes.
- s (int) – size of scatter points.
- ax (Axes) – Axes object to plot points on.
- function_line (bool) – If true, plots nonlinear function on top of points.
- line_color (matplotlib color.) – color of function line.
Returns: ax – Axes object with plot.
Return type: matplotlib.Axes
-
epistasis.pyplot.nonlinear.
plot_scale
(model=None, yadd=None, yobs=None, yerr=None, function=None, cmap=None, color=None, s=50, alpha=1, ax=None, function_line=True, line_color='r', **kwargs)¶ Plot a Y_obs vs. Y_add showing the nonlinear scale in a genotype-phenotype map.
Parameters: - model ((default=None)) – Epistasis model.
- yadd (array (default=None)) – x-axis data. The additive model phenotypes.
- yobs (array (default=None)) – y-axis data. The observed phenotypes.
- yerr (array (default=None)) – y-axis error. Error in observed phenotypes.
- function (callable) – Nonlinear function.
- cmap (str) – Colormap name to map onto scatter points.
- color (str, array,) – color of phenotypes.
- s (int) – size of scatter points.
- ax (Axes) – Axes object to plot points on.
- function_line (bool) – If true, plots nonlinear function on top of points.
- line_color (matplotlib color.) – color of function line.
Returns: ax – Axes object with plot.
Return type: matplotlib.Axes